- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Apel, Sven (1)
-
Brechmann, André (1)
-
Hofmeister, Johannes C. (1)
-
Parnin, Chris (1)
-
Peitek, Norman (1)
-
Siegmund, Janet (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background: Researchers have recently started to validate decades-old program-comprehension models using functional magnetic resonance imaging (fMRI). While fMRI helps us to understand neural correlates of cognitive processes during program comprehension, its comparatively low temporal resolution (i.e., seconds) cannot capture fast cognitive subprocesses (i.e., milliseconds). Aims: To increase the explanatory power of fMRI measurement of programmers, we are exploring in this methodological paper the feasibility of adding simultaneous eye tracking to fMRI measurement. By developing a method to observe programmers with two complementary measures, we aim at obtaining a more comprehensive understanding of program comprehension. Method: We conducted a controlled fMRI experiment of 22 student participants with simultaneous eye tracking. Results: We have been able to successfully capture fMRI and eye-tracking data, although with limitations regarding partial data loss and spatial imprecision. The biggest issue that we experienced is the partial loss of data: for only 10 participants, we could collect a complete set of high-precision eye-tracking data. Since some participants of fMRI studies show excessive head motion, the proportion of full and high-quality data on fMRI and eye tracking is rather low. Still, the remaining data allowed us to confirm our prior hypothesis of semantic recall during program comprehension, which was not possible with fMRI alone. Conclusions: Simultaneous measurement of program comprehension with fMRI and eye tracking is promising, but with limitations. By adding simultaneous eye tracking to our fMRI study framework, we can conduct more fine-grained fMRI analyses, which in turn helps us to understand programmer behavior better.more » « less
An official website of the United States government
